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What We’ll Cover Today . . .

• Electric power 
industry

• Pollutant emissions
• Control technologies
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Electric Power Industry

• $250 billion in annual electricity sales in 2002; likely to have annual 
sales between $250 and $270 billion in 2010 to 2015

• Industry operates 16,500 units and 5,700 plants

• There are 3,100 electric utilities, 2,800 IPPs, 230 IOUs, and 2,000 
publicly owned utilities

• The industry employs 362,000 people

• In the last five years, we have seen 
industry spend $88 billion in new 
power plant investments
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Electric Generation in 2002 Historical & Projected Electric Generation

Source: 2002 and historical generation is from EIA’s Annual Energy Review.  Projected generation is from EPA’s Integrated Planning Model.

Total Generation = 3,858 billion kWhs
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Source: EEI
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Coal-Fired Power Plants

• There are about 
530 power plants 
with 305 GW of 
capacity that 
consist of about 
1,300 units.

• Coal plants 
generate the vast 
majority of power 
sector emissions:

- 100% Hg
- 95% SO2

- 90% of NOx
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NOx Emissions
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Emissions of Mercury

Source: EPA

1999 Mercury Emissions
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• Emissions reductions possible through:
– Emissions control technologies
– Advanced power generation technologies
– Power plant upgrading options
– Fuel switching

• Focus on emissions control technologies

Pollutant Reduction
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NOx Control Technologies

• Primary – reduce the NOx produced in the 
primary combustion zone.
– Widely used - low NOx burners (LNBs) and overfire

air (OFA)

• Secondary - reduce the NOx already present in the 
flue gas
– Widely used - reburning, selective non-catalytic 

reduction (SNCR), and selective catalytic reduction 
(SCR)
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Low NOx Burners

• Limit NOx formation by delaying complete 
mixing of fuel and air
– Reduced oxygen in primary flame zone

– Reduced flame temperature

– Reduced residence time at peak temperature

• Can provide reductions in excess of 50%
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Overfire Air

• 5 to 20% of the total combustion air is 
injected through ports located downstream 
of the top burner level
– Burners operate at lower than normal air-to-fuel 

ratio resulting in NOx control, OFA added to 
achieve complete combustion

– Can be used with LNB to increase NOx
reduction by 10 to 25% 
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Reburning

• Reburn fuel (natural gas, coal, 
other fuels) is injected to 
provide 15-25% of total heat 
input 

• >50% NOx reduction, 
mercury and SO2 reduction

• Low capital costs
• Fuels costs, availability of 

adequate residence time
• Applications: cyclone, wall, 

tangential; 33-600 MWeMain fuel and air

Reburn zone

Burning zone

Flue gas

Superheaters

Reburn air

Reburn fuel

Main fuel and air
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SNCR

• Urea or NH3 injection, 
generally between 980 to 
1150 oC

• 30 to 60 % NOx reduction
• Low capital costs
• Load following, NH3 slip, 

performance on larger 
boilers

• Applications: cyclone, 
wall, tangential; 50-620 
MW

Burning zone

Flue gas

Superheaters

Reagent

Main fuel and air
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SCR

• NH3 injection, generally 
between 350-400 oC

• More than 90 % reduction 
is possible, especially with 
LNB 

• Capital intensive, space 
requirements, NH3 slip, 
SO3 emissions, catalyst 
deactivation   

• Applications: 
– More than 75 boilers; 

cyclone, wall, tangential; 
122 - 1300 MW
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SO2 Control Technologies

Limestone Forced Oxidation
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Wet Scrubbers

FGD at Centralia 
Power Plant

• State-of-the-art is 95% 
SO2 removal

• 98 GW (33%) of coal-fired 
units have scrubbers

• We project 115 GW to 
have scrubbers by 2010 
for Title IV and State regs
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Flue Gas In

Slurry In

Recycle 
Tank

Recycle Loop

Disposal

Flue Gas 
Out

Lime Spray Drying

• State of the art is 90% 
removal

• More than 14 GW of 
installation
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Mercury in Coal-fired Boilers
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Mercury Speciation

• In general, speciation depends on:
– Coal properties (mercury, chlorine, and ash 

contents)

– Time/temperature profile

– Flue gas composition and fly ash characteristics 
(carbon, calcium, iron, porosity)

– Flue gas cleaning conditions
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Mercury Capture in Existing Equipment

Removal in PM Controls
• Mercury can be adsorbed onto fly ash surfaces; Hg2+ is 

more readily adsorbed than Hg0

• Mercury can be physically adsorbed at relatively lower 
temperatures (hot-side ESP vs. cold-side ESP)

Capture in Wet Scrubbers
• Hg2+ capture depends on solubility of each compound; 

Hg0 is insoluble and cannot be captured
• Capture enhanced by SCR
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ICR Data

0

20

40

60

80

100

H
g 

R
em

ov
al

 (
%

)

Bituminous
Subbituminous

• Bituminous vs
subbituminous

• Hg capture for different
coal-control technology
combinations correlate
with coal chlorine content
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Chlorine vs. Mercury Speciation 

• ICR data for Hg0

at ESP & FF inlet

• Hg0 oxidation 
appears to be 
independent of 
chlorine above 100 
µg/g

• Other important 
factors
– Temperature
– Fly ash carbon
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• Speciation influences emissions control
– Ionic Hg2+ is removed easily by wet scrubbers
– Volatile elemental Hg0 is difficult to capture

• SCR units are being used extensively to 
meet current NOx regulations

• SCR can convert elemental mercury in coal 
combustion flue gas into the ionic form
– field data in Europe and U.S. reflects increase 

in Hg2+ across SCR reactor

SCR and Mercury Interactions
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SCR-Mercury R&D
• Tested 4 utility plants in the 2001 and 2 in 2002; retested 2 plants in 2002; 

total of 8 data points
• Oxidized mercury increase across SCR: bit. - up to 71%; subbit. - 10% (one 

data point only)
• Removal in PM control and FGD (5 data points) - ~ 85% - 90%
• Results from repeated tests were consistent with previous data; impacts of 

SCR catalyst aging not apparent
• SCR systems with relatively lower catalyst volumes (space velocity greater 

than 3500 hr-1) also showed significant oxidation increases 
• Data gaps: PRB, blends
• Ongoing EPA bench- and pilot-scale research: HCl provides critical chlorine 

source for Hg0 oxidation; NOx has a significant promotional effect; SOx has 
little effect under the conditions of this study
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PM Control Technologies
for Power Plants

• Electrostatic precipitators (ESPs)
– 72% of U.S. coal-fired boilers, total PM up to 

99.9%, fine PM 80-95%

• Baghouses
– 14% of U.S. coal-fired boilers, total PM up to 

99.9%, fine PM 99-99.8%
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Sometimes a picture is worth a …
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How Does an ESP Work?

Corona (Negative polarity)

Particulate Matter (PM)

Discharge Electrode
(High Voltage Wire)

Collection Plate (Positive Polarity)

Particle Flow

Charged Particles

Collected Particles
Dust Layer
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Emerging Technologies
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Sorbent Injection

• The extent of capture depends on:

– Sorbent characteristics
(particle size distribution, 
porosity, capacity at  different 
gas temperatures)

– Residence time in the flue gas

– Type of PM control (FF vs. 
ESP) 

– Concentrations of SO3 and 
other contaminants

Flue Gas

Ash and Sorbent

Sorbent
Injection

ESP or FF
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Activated Carbon Injection (ACI)

Activated carbon injection system

Activated carbon storage and feed system• ACI successfully used to reduce 
mercury emissions from waste-to-
energy facilities. Effort underway to 
transfer to coal-fired power plants.

• Not currently installed at any power 
plant, but short-term testing suggests 
it may eventually be able to achieve 
90% control for all coal types.
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Carbon Injection Projects

• Alabama Power E.C. Gaston: unit 3, 270-MW, low-sulfur eastern bit. 
coals (0.14 ppm Hg and 160 ppm Cl); hot-side ESP, COHPAC baghouse; 
testing on one-half of the gas stream, nominally 135 MW; wet ash to pond

• WEPCO Pleasant Prairie: unit 2, 600-MW, PRB coal (0.11 ppm Hg and 8 
ppm Cl); ESP (468 ft2/kacfm), spray cooling, SO3 conditioning; testing on 
one ESP chamber (1/4 of the unit); fly ash sold for use in concrete

• PG&E Brayton Point: unit 1, 245-MW, low-S bit. coal (0.03 ppm Hg and 
2000-4000 ppm Cl); SO3 conditioning system; 2 ESPs in series (550 
ft2/kacfm); PAC injection between the ESPs

• PG&E Salem Harbor: 85-MW, low-S bit. coal (0.03-0.08 ppm Hg and 206 
ppm Cl); ESP (474 ft2/kacfm); SNCR
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Mercury Removal Trends with ACI
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PG&E Salem Harbor
(w/o PAC Injection)

• 85-MW, low-S bit. coal (0.03-0.08 
ppm Hg and 206 ppm Cl); ESP (474 
ft2/kacfm); SNCR

• High baseline removal due to high 
levels of LOI; minimal impact on 
reducing LOI from 30-35% to 15-
20% at 300 oF

• Temperature has greater effect than 
LOI

• SNCR has no impact on Hg removal

Source: ADA-ES
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PG&E Salem Harbor
(w/ PAC Injection)

• At lower temperatures, 
removal by PAC affected 
by high baseline removal

• At higher temperatures, 
linear behavior (similar to 
that at Brayton Point
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A few more things . . . 
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Wet FGD Modification
• Capable of removing SO2 in 

excess of 95 % 
• Can remove oxidized Hg
• Three routes for NO removal:

– gas phase oxidation to N2O5

– oxidation to NO2 and reduction to 
N2 in the scrubber via sulfate and 
bisulfate ions

• Investigate SO2, Hg, NOx
removal and SO2 to SO3 
conversion
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ESFF
• Electrostatically Stimulated Fabric 

Filtration (ESFF)--developed by 
EPA

• Pulsejet fabric filter with high 
voltage electrodes centered between 
groups of four bags

• Pilot-scale performance data:
– PM2.5 with ESFF=0.14 mg/m3
– PM2.5 without ESFF=0.51 mg/m3
– PM1 with ESFF=0.05 mg/m3
– PM1 without ESFF=0.17 mg/m3

• BHA Group, Inc. licensee has 
developed preliminary commercial 
design          
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Development of Multipollutant Sorbents

• Sorbent Development
– Synthesis, 

Characterization, 
Evaluation & 
Optimization

– Relate  structure and 
chemical nature to 
adsorption characteristics
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•Types of Sorbents Being Studied
–Sorbents synthesized using industrial by-products
–Modified carbon-type sorbents
–Surface modified Calcium Silicate Hydrate (C-S-H)
–Multipollutant sorbents that also have adsorptive capacity for CO2


